Advertisements
Advertisements
प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
उत्तर
It is known that- f(x) = 10 - 6x - 2x2
f'(x) = - 6 - 4x = - 2 (3 + 2x)
When f'(x) = 0 `=>` -2 (3 + 3x) = 0 `=> x = - 3/2`
The point `x = - 3/2` divides the number line into two parts, the intervals `(- infty, - 3/2)` and `(3/2, infty )`.
Interval `(- infty, - 3/2),` f'(x) = + Positive
Hence, the function f is continuously increasing
Interval `(3/2, infty),` f'(x) = - Positive
Hence, the function f is decreasing.
APPEARS IN
संबंधित प्रश्न
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the logarithmic function is strictly increasing on (0, ∞).
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Function f(x) = ax is increasing on R, if
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
The function f(x) = x9 + 3x7 + 64 is increasing on
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
The function f (x) = 2 – 3 x is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The function f(x) = x3 + 3x is increasing in interval ______.