हिंदी

Find the Interval in Which the Following Function Are Increasing Or Decreasing F(X) = X3 − 6x2 + 9x + 15 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?

योग

उत्तर

\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]

\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]

\[f\left( x \right) = x^3 - 6 x^2 + 9x + 15\]

\[f'\left( x \right) = 3 x^2 - 12x + 9\]

\[ = 3 \left( x^2 - 4x + 3 \right)\]

\[ = 3 \left( x - 1 \right)\left( x - 3 \right)\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 3 \left( x - 1 \right)\left( x - 3 \right) > 0 \]

\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \left[ \text { Since } 3 > 0, 3 \left( x - 1 \right)\left( x - 3 \right) > 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \right]\]

\[ \Rightarrow x < 1 \ or \ x > 3\]

\[ \Rightarrow x \in \left( - \infty , 1 \right) \cup \left( 3, \infty \right)\]

\[\text { So,f(x)is increasing on } x \in \left( - \infty , 1 \right) \cup \left( 3, \infty \right).\]

\[\text { For f(x) to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow 3 \left( x - 1 \right)\left( x - 3 \right) < 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \left[ \text { Since } 3 > 0, 3 \left( x - 1 \right)\left( x - 3 \right) < 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \right]\]

\[ \Rightarrow 1 < x < 3 \]

\[ \Rightarrow x \in \left( 1, 3 \right)\]

\[\text { So,f(x)is decreasing on x } \in \left( 1, 3 \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 1.24 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


A function f is said to be increasing at a point c if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×