हिंदी

Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b). - Mathematics

Advertisements
Advertisements

प्रश्न

Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).

योग

उत्तर

Let x1, x2, ∈ (a, b) such that x1 < x2 ∈ f (x) is differentiable on (a, b) and [x1, x2] ⊂ (a, b)

∴ f(x) is continuous on [x1, x2] and differentiable on (x1, x2).

∴ According to Lagrange mean theorem,

Here there exists c ∈ (x1, x2) such that

`f'(c) = (f(x_2) - f(x_1))/(x_2 - x_1)`           ...(1)

Since for all x ∈ (a, b), f'(x) > 0

∴ In particular, f'(c) > 0

Now, f'(c) > 0 `=> (f(x_2) - f(x_1))/(x_2 - x_1) > 0`

⇒ f(x2) - f(x1) > 0       ...[∵ x2 - x1 > 0 when x1 - x2]

⇒ f(x2) > f(x1)

⇒ f(x1) < f(x2), if x1 < x2

Because x1, x2 are arbitrary points in (a, b).

∴ x1 < x

⇒ f(x1) < f(x2) for all

x1, x∈ (a, b)

∴ f(x) is increasing in (a, b).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.6 [पृष्ठ २४३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.6 | Q 16 | पृष्ठ २४३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


The function f(x) = xx decreases on the interval


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Function f(x) = ax is increasing on R, if


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The slope of tangent at any point (a, b) is also called as ______.


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = x3 - 3x is ______.


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


For every value of x, the function f(x) = `1/7^x` is ______ 


If f(x) = x3 – 15x2 + 84x – 17, then ______.


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×