Advertisements
Advertisements
प्रश्न
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
उत्तर
Let x1, x2, ∈ (a, b) such that x1 < x2 ∈ f (x) is differentiable on (a, b) and [x1, x2] ⊂ (a, b)
∴ f(x) is continuous on [x1, x2] and differentiable on (x1, x2).
∴ According to Lagrange mean theorem,
Here there exists c ∈ (x1, x2) such that
`f'(c) = (f(x_2) - f(x_1))/(x_2 - x_1)` ...(1)
Since for all x ∈ (a, b), f'(x) > 0
∴ In particular, f'(c) > 0
Now, f'(c) > 0 `=> (f(x_2) - f(x_1))/(x_2 - x_1) > 0`
⇒ f(x2) - f(x1) > 0 ...[∵ x2 - x1 > 0 when x1 - x2]
⇒ f(x2) > f(x1)
⇒ f(x1) < f(x2), if x1 < x2
Because x1, x2 are arbitrary points in (a, b).
∴ x1 < x2
⇒ f(x1) < f(x2) for all
x1, x2 ∈ (a, b)
∴ f(x) is increasing in (a, b).
APPEARS IN
संबंधित प्रश्न
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
The function f(x) = xx decreases on the interval
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Function f(x) = ax is increasing on R, if
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The slope of tangent at any point (a, b) is also called as ______.
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
The function f(x) = x3 - 3x is ______.
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
For every value of x, the function f(x) = `1/7^x` is ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.