हिंदी

If the Function F(X) = Cos |X| − 2ax + B Increases Along the Entire Number Scale, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 

विकल्प

  •  a = b

  • \[a = \frac{1}{2}b\]

  • \[a \leq - \frac{1}{2}\]

  • \[a > - \frac{3}{2}\]

MCQ

उत्तर

\[a \leq - \frac{1}{2}\]

\[Given: f\left( x \right) = \cos \left| x \right| - 2ax + b\]

\[\text { Now}, \left| x \right|  =\begin{cases} x ,& x \geq 0 \\ - x, & x < 0  \end{cases}\]

\[\text { and } \cos \left| x \right| = \begin{cases} \cos\left( x \right) , & x \geq 0 \\cos\left( - x \right) = cos\left( x \right), & x < 0\end{cases}\]

\[ \therefore \cos\left| x \right| = \cos x , \forall x \in R\]

\[ \therefore f\left( x \right) = \cos x - 2ax + b\]

\[ \Rightarrow f'\left( x \right) = - \sin x - 2a\]

\[\text { It is given that f(x) is increasing } . \]

\[ \Rightarrow f'\left( x \right) \geq 0\]

\[ \Rightarrow - \sin x - 2a \geq 0\]

\[ \Rightarrow \sin x + 2a \leq 0\]

\[ \Rightarrow 2a \leq - \sin x\]

\[\text { The least value of -sin x is -1 }.\]

\[ \Rightarrow 2a \leq - 1\]

\[ \Rightarrow a \leq \frac{- 1}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 21 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


The interval in which y = x2 e–x is increasing is ______.


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


Function f(x) = cos x − 2 λ x is monotonic decreasing when


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Function f(x) = ax is increasing on R, if


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


The function f(x) = x9 + 3x7 + 64 is increasing on


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


If f(x) = x3 – 15x2 + 84x – 17, then ______.


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Which of the following functions is decreasing on `(0, pi/2)`?


The function f (x) = x2, for all real x, is ____________.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×