Advertisements
Advertisements
प्रश्न
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
विकल्प
a = b
\[a = \frac{1}{2}b\]
\[a \leq - \frac{1}{2}\]
\[a > - \frac{3}{2}\]
उत्तर
\[a \leq - \frac{1}{2}\]
\[Given: f\left( x \right) = \cos \left| x \right| - 2ax + b\]
\[\text { Now}, \left| x \right| =\begin{cases} x ,& x \geq 0 \\ - x, & x < 0 \end{cases}\]
\[\text { and } \cos \left| x \right| = \begin{cases} \cos\left( x \right) , & x \geq 0 \\cos\left( - x \right) = cos\left( x \right), & x < 0\end{cases}\]
\[ \therefore \cos\left| x \right| = \cos x , \forall x \in R\]
\[ \therefore f\left( x \right) = \cos x - 2ax + b\]
\[ \Rightarrow f'\left( x \right) = - \sin x - 2a\]
\[\text { It is given that f(x) is increasing } . \]
\[ \Rightarrow f'\left( x \right) \geq 0\]
\[ \Rightarrow - \sin x - 2a \geq 0\]
\[ \Rightarrow \sin x + 2a \leq 0\]
\[ \Rightarrow 2a \leq - \sin x\]
\[\text { The least value of -sin x is -1 }.\]
\[ \Rightarrow 2a \leq - 1\]
\[ \Rightarrow a \leq \frac{- 1}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
The interval in which y = x2 e–x is increasing is ______.
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = ax is increasing on R, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The function f(x) = x9 + 3x7 + 64 is increasing on
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f (x) = x2, for all real x, is ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.