हिंदी

In the Interval (1, 2), Function F(X) = 2 | X − 1 | + 3 | X − 2 | is - Mathematics

Advertisements
Advertisements

प्रश्न

In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is

विकल्प

  • increasing

  • decreasing

  • constant

  • none of these

MCQ

उत्तर

 decreasing

\[\text { Given }: f\left( x \right) = 2\left| x - 1 \right| + 3\left| x - 2 \right|\]

\[\text { If 1 < x < 2, then }\left| x - 1 \right| = x - 1 . \]

\[ \Rightarrow \left| x - 2 \right| = - \left( x - 2 \right)\]

\[\text { Now,}\]

\[f\left( x \right) = 2\left| x - 1 \right| + 3\left| x - 2 \right|\]

\[ = 2 \left( x - 1 \right) + 3 \left( - x + 2 \right)\]

\[ = 2x - 2 - 3x + 6\]

\[ = - x + 4\]

\[f'\left( x \right) = - 1 < 0\]

\[\text { So,}f\left( x \right) \text { is decreasing when 1 < x < 2 } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 20 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


The function f(x) = xx decreases on the interval


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Function f(x) = x3 − 27x + 5 is monotonically increasing when


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


y = x(x – 3)2 decreases for the values of x given by : ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


A function f is said to be increasing at a point c if ______.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×