Advertisements
Advertisements
प्रश्न
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
विकल्प
(1, 2)
(2, 3)
(1, 3)
(2, 4)
उत्तर
(2, 3)
\[\text { Given: } \hspace{0.167em} f\left( x \right) = 2 \log \left( x - 2 \right) - x^2 + 4x + 1\]
\[\text { Domain of f }\left( x \right) is\left( 2, \infty \right).\]
\[f'\left( x \right) = \frac{2}{x - 2} - 2x + 4\]
\[ = \frac{2 - 2 x^2 + 4x + 4x - 8}{x - 2}\]
\[ = \frac{- 2 x^2 + 8x - 6}{x - 2}\]
\[ = \frac{- 2 \left( x^2 - 4x + 3 \right)}{x - 2}\]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{- 2 \left( x^2 - 4x + 3 \right)}{x - 2} > 0\]
\[ \Rightarrow x^2 - 4x + 3 + < 0 \left[ \because \left( x - 2 \right) > 0 \text { & }- 2 < 0 \right]\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow 1 < x < 3\]
\[ \Rightarrow x \in \left( 1, 3 \right)\]
\[\text { Also, the domain of f }\left( x \right)is\left( 2, \infty \right).\]
\[ \Rightarrow x \in \left( 1, 3 \right) \cap \left( 2, \infty \right)\]
\[ \Rightarrow x \in \left( 2, 3 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
The function f(x) = x3 - 3x is ______.
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
A function f is said to be increasing at a point c if ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)