हिंदी

Show that F(X) = 1 X is a Decreasing Function on (0, ∞) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?

योग

उत्तर

\[\text{ Here }, \]

\[f\left( x \right) = \frac{1}{x}\]

\[\text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \text { Then }, \]

\[ x_1 < x_2 \]

\[ \Rightarrow \frac{1}{x_1} > \frac{1}{x_2}\]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So, }f\left( x \right)\text {  is decreasing on }\left( 0, \infty \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 5 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function f(x) = cot−1 x + x increases in the interval


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Show that f(x) = x – cos x is increasing for all x.


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______


The function f(x) = sin x + 2x is ______ 


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The function f (x) = 2 – 3 x is ____________.


The function f (x) = x2, for all real x, is ____________.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×