Advertisements
Advertisements
प्रश्न
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
उत्तर
\[\text{ Here }, \]
\[f\left( x \right) = \frac{1}{x}\]
\[\text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \text { Then }, \]
\[ x_1 < x_2 \]
\[ \Rightarrow \frac{1}{x_1} > \frac{1}{x_2}\]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[\therefore x_1 < x_2 \]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { So, }f\left( x \right)\text { is decreasing on }\left( 0, \infty \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The function f(x) = cot−1 x + x increases in the interval
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Show that f(x) = x – cos x is increasing for all x.
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The function f(x) = sin x + 2x is ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f (x) = 2 – 3 x is ____________.
The function f (x) = x2, for all real x, is ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.