Advertisements
Advertisements
प्रश्न
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
उत्तर
\[f\left( x \right) = ax + b\]
\[\text { Let }x_1 , x_2 \text { in R such that } x_1 < x_2 . \]
\[\text { Then },\]
\[ x_1 < x_2 \]
\[ \Rightarrow a x_1 > a x_2 (\because a<0)\]
\[ \Rightarrow a x_1 + b > a x_2 + b\]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[\text { Thus }, x_1 < x_2 \]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in R\]
\[\text { So },f\left( x \right) \text { is decreasing on R } .\]
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Find `dy/dx,if e^x+e^y=e^(x-y)`
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Show that f(x) = x – cos x is increasing for all x.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
The function f(x) = x3 + 3x is increasing in interval ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.