हिंदी

Show that F(X) = X2 − X Sin X is an Increasing Function on (0, π/2) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?

योग

उत्तर

\[f\left( x \right) = x^2 - x \sin x\]

\[f'\left( x \right) = 2x - x \cos x - \sin x\]

\[\text { Here,} \]

\[0 < x < \frac{\pi}{2}\]

\[ \Rightarrow 0 < \sin x < 1 \text { and }0 < \cos x < 1\]

\[ \Rightarrow 2x - x \cos x - \sin x > 0\]

\[ \Rightarrow f'\left( x \right) > 0, \forall x \in \left( 0, \frac{\pi}{2} \right)\]

\[\text { So },f\left( x \right)\text {  is increasing on}\left( 0, \frac{\pi}{2} \right).\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 34 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


The function f(x) = xx decreases on the interval


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The function f(x) = x9 + 3x7 + 64 is increasing on


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


A function f is said to be increasing at a point c if ______.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×