Advertisements
Advertisements
प्रश्न
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
उत्तर
f(x) = 2x3 - 3x2 - 36x + 7
f'(x) = 6x2 - 6x - 36
= 6(x2 - x - 6)
= 6(x - 3) (x + 2)
if, f'(x) = 0
6(x - 3) (x + 2) = 0
x = -2, 3 divides the real line into three intervals `(- infty, - 2), (-2, 3)` and `(3, infty)`.
(a) The function f is continuously increasing in the intervals `(- infty, - 2)` and `(3, infty)`.
(b) The function f is continuously decreasing in the interval (-2, 3).
APPEARS IN
संबंधित प्रश्न
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Function f(x) = ax is increasing on R, if
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.