हिंदी

Determine the Values of X for Which the Function F(X) = X2 − 6x + 9 is Increasing Or Decreasing. Also, Find the Coordinates of the Point on the Curve Y = X2 − 6x + 9 Where the Normal is Parallel - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 

योग

उत्तर

\[\text { Here }, \]

\[f\left( x \right) = x^2 - 6x + 9\]

\[f'\left( x \right) = 2x - 6\]

\[\text { For f(x) to be increasing, we must have}\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 2x - 6 > 0\]

\[ \Rightarrow 2x > 6\]

\[ \Rightarrow x > 3\]

\[ \Rightarrow x \in \left( 3, \infty \right)\]

\[\text { So,f(x)is increasing on } \left( 3, \infty \right) . \]

\[\text { For }f(x) \text { to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow 2x - 6 < 0\]

\[ \Rightarrow 2x < 6\]

\[ \Rightarrow x < 3\]

\[ \Rightarrow x \in \left( - \infty , 3 \right)\]

\[\text { So,f(x)is decreasing on }\left( - \infty , 3 \right).\]

Let (x, y) be the coordinates on the given curve where the normal to the curve is parallel to the given line.
Slope of the given line = 1

\[\text { Slope of tangent} = \left( \frac{dy}{dx} \right)_\left( x, y \right) =2x - 6\]

\[\text { Slope of normal } =\frac{- 1}{\text { Slope of tangent }}=\frac{- 1}{2x - 6}\]

\[\text { Now,} \]

\[\text { Slope of normal = Slope of the given line }\]

\[\frac{- 1}{2x - 6} = 1\]

\[ - 1 = 2x - 6\]

\[2x = 5\]

\[x = \frac{5}{2}\]

\[\text { Given curve is }\]

\[y = x^2 - 6x + 9\]

\[ = \frac{25}{4} - 15 + 9\]

\[ = \frac{1}{4}\]

\[\left( x, y \right) = \left( \frac{5}{2}, \frac{1}{4} \right)\]

\[\text { Hence, the coordinates are } \left( \frac{5}{2}, \frac{1}{4} \right) . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 2 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.


Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Function f(x) = x3 − 27x + 5 is monotonically increasing when


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


The function f(x) = x9 + 3x7 + 64 is increasing on


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


The slope of tangent at any point (a, b) is also called as ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×