मराठी

Determine the Values of X for Which the Function F(X) = X2 − 6x + 9 is Increasing Or Decreasing. Also, Find the Coordinates of the Point on the Curve Y = X2 − 6x + 9 Where the Normal is Parallel - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 

बेरीज

उत्तर

\[\text { Here }, \]

\[f\left( x \right) = x^2 - 6x + 9\]

\[f'\left( x \right) = 2x - 6\]

\[\text { For f(x) to be increasing, we must have}\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 2x - 6 > 0\]

\[ \Rightarrow 2x > 6\]

\[ \Rightarrow x > 3\]

\[ \Rightarrow x \in \left( 3, \infty \right)\]

\[\text { So,f(x)is increasing on } \left( 3, \infty \right) . \]

\[\text { For }f(x) \text { to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow 2x - 6 < 0\]

\[ \Rightarrow 2x < 6\]

\[ \Rightarrow x < 3\]

\[ \Rightarrow x \in \left( - \infty , 3 \right)\]

\[\text { So,f(x)is decreasing on }\left( - \infty , 3 \right).\]

Let (x, y) be the coordinates on the given curve where the normal to the curve is parallel to the given line.
Slope of the given line = 1

\[\text { Slope of tangent} = \left( \frac{dy}{dx} \right)_\left( x, y \right) =2x - 6\]

\[\text { Slope of normal } =\frac{- 1}{\text { Slope of tangent }}=\frac{- 1}{2x - 6}\]

\[\text { Now,} \]

\[\text { Slope of normal = Slope of the given line }\]

\[\frac{- 1}{2x - 6} = 1\]

\[ - 1 = 2x - 6\]

\[2x = 5\]

\[x = \frac{5}{2}\]

\[\text { Given curve is }\]

\[y = x^2 - 6x + 9\]

\[ = \frac{25}{4} - 15 + 9\]

\[ = \frac{1}{4}\]

\[\left( x, y \right) = \left( \frac{5}{2}, \frac{1}{4} \right)\]

\[\text { Hence, the coordinates are } \left( \frac{5}{2}, \frac{1}{4} \right) . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 2 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


Which of the following functions is decreasing on `(0, pi/2)`?


The function f(x) = x2 – 2x is increasing in the interval ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


A function f is said to be increasing at a point c if ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×