Advertisements
Advertisements
प्रश्न
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
उत्तर
\[f\left( x \right) = \left( x - 1 \right) e^x + 1\]
\[f'\left( x \right) = \left( x - 1 \right) e^x + e^x \]
\[ = x e^x - e^x + e^x \]
\[ = x e^x \]
\[\text { Given }:x > 0 \]
\[\text { We know,}\]
\[ e^x > 0\]
\[\Rightarrow x e^x > 0\]
\[ \Rightarrow f'\left( x \right) > 0, \forall x > 0\]
\[\text { So },f(x)\text { is increasing on for all }x>0.\]
APPEARS IN
संबंधित प्रश्न
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
The function f(x) = xx decreases on the interval
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Every invertible function is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
If f(x) = x3 – 15x2 + 84x – 17, then ______.
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The function f (x) = x2, for all real x, is ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.