Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^3 - 6 x^2 - 36x + 2\]
\[f'\left( x \right) = 3 x^2 - 12x - 36\]
\[ = 3 \left( x^2 - 4x - 12 \right)\]
\[ = 3 \left( x - 6 \right)\left( x + 2 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have },\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 3 \left( x - 6 \right)\left( x + 2 \right) > 0\]
\[ \Rightarrow \left( x - 6 \right)\left( x + 2 \right) > 0 \left[ \text { Since } 3 > 0, 3 \left( x - 6 \right)\left( x + 2 \right) > 0 \Rightarrow \left( x - 6 \right)\left( x + 2 \right) > 0 \right]\]
\[ \Rightarrow x < - 2 \ or \ x > 6\]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 6, \infty \right)\]
\[\text { So,}f(x)\text { is increasing on } x \in \left( - \infty , - 2 \right) \cup \left( 6, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 3 \left( x - 6 \right)\left( x + 2 \right) < 0\]
\[ \Rightarrow \left( x - 6 \right)\left( x + 2 \right) < 0 \left[ \text { Since } 3 > 0, 3 \left( x - 6 \right)\left( x + 2 \right) < 0 \Rightarrow \left( x - 6 \right)\left( x + 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 6 \]
\[ \Rightarrow x \in \left( - 2, 6 \right)\]
\[\text{ So },f(x)\text { is decreasing on } x \in \left( - 2, 6 \right) .\]
APPEARS IN
संबंधित प्रश्न
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Find `dy/dx,if e^x+e^y=e^(x-y)`
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Show that f(x) = x – cos x is increasing for all x.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.