मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Let f(x) = x3 − 62 + 9𝑥 + 18, then f(x) is strictly decreasing in ______ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______

पर्याय

  • (−∞, 1)

  • (3, ∞)

  • (−∞, 1) ∪ (3, ∞)

  • (1, 3)

MCQ
रिकाम्या जागा भरा

उत्तर

(1, 3)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.2: Applications of Derivatives - MCQ

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


The interval in which y = x2 e–x is increasing is ______.


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


The function f(x) = cot−1 x + x increases in the interval


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Function f(x) = cos x − 2 λ x is monotonic decreasing when


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Find `dy/dx,if e^x+e^y=e^(x-y)`


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The function f(x) = 9 - x5 - x7 is decreasing for


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


The function f(x) = tan-1 x is ____________.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Which of the following graph represent the strictly increasing function.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×