Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^4 - 4x\]
\[f'\left( x \right) = 4 x^3 - 4\]
\[ = 4\left( x^3 - 1 \right)\]
\[\text { For}f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 4\left( x^3 - 1 \right) > 0 \]
\[ \Rightarrow x^3 - 1 > 0\]
\[ \Rightarrow x^3 > 1\]
\[ \Rightarrow x > 1\]
\[ \Rightarrow x \in \left( 1, \infty \right)\]
\[\text { So,}f(x)\text { is increasing on }\left( 1, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 4\left( x^3 - 1 \right) < 0\]
\[ \Rightarrow x^3 - 1 < 0\]
\[ \Rightarrow x^3 < 1\]
\[ \Rightarrow x < 1\]
\[ \Rightarrow x \in \left( - \infty , 1 \right)\]
\[\text { So,}f(x)\text { is decreasing on }\left( - \infty , 1 \right).\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function f(x) = xx decreases on the interval
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Find `dy/dx,if e^x+e^y=e^(x-y)`
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The function f(x) = 9 - x5 - x7 is decreasing for
The function f(x) = x3 - 3x is ______.
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
If f(x) = x + cosx – a then ______.