Advertisements
Advertisements
प्रश्न
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
उत्तर
\[f\left( x \right) = x^9 + 4 x^7 + 11\]
\[f'\left( x \right) = 9 x^8 + 28 x^6 \geq 0, \forall x \in R \left[ \because x^8 {, x}^6 \geq0, \text { for } \forall x \in R \right]\]
\[\text {So, f(x) is increasing on R } .\]
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Function f(x) = cos x − 2 λ x is monotonic decreasing when
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
The function f(x) = 9 - x5 - x7 is decreasing for
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function f (x) = x2, for all real x, is ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
2x3 - 6x + 5 is an increasing function, if ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.