Advertisements
Advertisements
प्रश्न
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
उत्तर
It is given that, \[\frac{dr}{dt} = 0 . 3 cm/s \text { and } \frac{dh}{dt} = - 0 . 4 cm/s\] Curved surface area of a cylinder \[\left( A \right) = 2\pi rh\].
Change in curved surface area of a cylinder is as follows:
\[\frac{dA}{dt} = 2\pi\frac{d\left( rh \right)}{dt}\]
\[ \Rightarrow \frac{dA}{dt} = 2\pi\left( r\frac{dh}{dt} + h\frac{dr}{dt} \right) \left[ \text { By product rule } \right]\]
\[ \Rightarrow \left[ \frac{dA}{dt} \right]_{r = 3 . 5 cm, h = 7 cm} = 2\pi\left[ 3 . 5 \times \left( - 0 . 4 \right) + 7 \times \left( 0 . 3 \right) \right]\]
\[\Rightarrow \frac{dA}{dt} = 2 \times \frac{22}{7}\left[ - 1 . 4 + 2 . 1 \right]\]
\[ \Rightarrow \frac{dA}{dt} = 2 \times \frac{22}{7}\left[ 0 . 7 \right]\]
\[ \Rightarrow \frac{dA}{dt} = 4 . 4 {cm}^2 /s\]
APPEARS IN
संबंधित प्रश्न
Prove that the logarithmic function is strictly increasing on (0, ∞).
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
For every value of x, the function f(x) = `1/7^x` is ______
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Which of the following graph represent the strictly increasing function.
y = log x satisfies for x > 1, the inequality ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?