मराठी

If the Function F(X) = 2x2 − Kx + 5 is Increasing on [1, 2], Then K Lies in the Interval - Mathematics

Advertisements
Advertisements

प्रश्न

If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval

पर्याय

  •  (−∞, 4)

  • (4, ∞)

  • (−∞, 8)

  • (8, ∞)

MCQ

उत्तर

 (−∞, 4)

\[f\left( x \right) = 2 x^2 - kx + 5\]

\[f'\left( x \right) = 4x - k\]

\[\text { Forf(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 4x - k > 0\]

\[ \Rightarrow k < 4x\]

\[\text { Since x } \in \left[ 1, 2 \right], 4x \in \left[ 4, 8 \right] . \]

\[\text { So, the minimum value of 4 x is 4 }.\]

\[\text { Since k < 4x, k < 4 }. \]

\[ \Rightarrow k \in \left( - \infty , 4 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 5 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Let f(x) = x3 − 6x2 + 15x + 3. Then,


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Function f(x) = loga x is increasing on R, if


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.


The function f(x) = tanx – x ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The function f(x) = tan-1 x is ____________.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×