मराठी

Which of the following functions are strictly decreasing on (0,π2)? A. cos x B. cos 2x C. cos 3x D. tan x - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x
बेरीज

उत्तर

(A) Let (x) = cos x, then   

f' (x) =  - sin x < 0 for all `x in (0, pi/2)`     ....`[∴ sin x > 0 AA x in (0, pi/2)]`

(B) Let f(x) = cos 2x, then

f'(x) = -2 sin 2x < 0 for all `x in (0, pi/2)`    ...(`∵ sin  x > 0 (0, pi) = sin 2x > 0 (0, pi/2)`

= f is strictly decreasing on `(0, pi/2)`

(c) Let f(x) = cos 3x, then f'(x) = -3 sin 3x, 

which assume +ve as well as -ve values in`(0, pi/2)`

`[0 < x < pi/2 = 0 <3x < (3pi)/2]`and `sin 3x > 0 (0, pi/2), sin 3x < o (pi, (3pi)/2)`

∴ f is neither increasing nor decreasing on `(0, pi/2)`

(D) Let f(x) = tan x, then f'(x) = sec2 x > 0 for all `x in (0, pi/2)`        ....`[∵ sec^2 x > 0 AA x in (0, pi/2)]`

= f is strictly increasing on `(0, pi/2)`

Thus, we find that the function in (A) and  (B) are strictly decreasing on `(0, pi/2).`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.2 [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.2 | Q 12 | पृष्ठ २०६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


The function f(x) = cot−1 x + x increases in the interval


The function f(x) = x2 e−x is monotonic increasing when


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


Every invertible function is


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


The function f(x) = 9 - x5 - x7 is decreasing for


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The function f(x) = x3 - 3x is ______.


The function f(x) = sin x + 2x is ______ 


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


y = log x satisfies for x > 1, the inequality ______.


If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×