Advertisements
Advertisements
प्रश्न
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
उत्तर
\[f\left( x \right) = \tan^{- 1} \left( \sin x + \cos x \right)\]
\[f'\left( x \right) = \frac{1}{1 + \left( \sin x + \cos x \right)^2}\left( \cos x - \sin x \right)\]
\[ = \frac{1}{1 + 1 + 2 \sin x \cos x}\left( \cos x - \sin x \right)\]
\[ = \frac{\left( \cos x - \sin x \right)}{2 + \sin 2x}\]
Here,
\[\frac{\pi}{4} < x < \frac{\pi}{2}\]
\[ \Rightarrow \frac{\pi}{2} < 2x < \pi\]
\[ \Rightarrow \sin 2x > 0\]
\[ \Rightarrow 2 + \sin 2x > 0 . . . \left( 1 \right)\]
Also,
\[\frac{\pi}{4} < x < \frac{\pi}{2}\]
\[\cos x < \sin x\]
\[ \Rightarrow \cos x - \sin x < 0 . . . \left( 2 \right)\]
\[f'\left( x \right) = \frac{\left( \cos x - \sin x \right)}{2 + \sin 2x} < 0, \forall x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) \left[ \text { From eqs . (1) and (2) }\right]\]
Therefore, f(x) is decreasing for all
\[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the logarithmic function is strictly increasing on (0, ∞).
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Show that f(x) = x – cos x is increasing for all x.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.