Advertisements
Advertisements
प्रश्न
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
उत्तर
\[f\left( x \right) = \sin x - \cos x, x \in \left( 0, 2\pi \right)\]
\[f'\left( x \right) = \cos x + \sin x\]
\[\text { For f(x) to be increasin, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \cos x + \sin x > 0\]
\[ \Rightarrow \sin x > - \cos x\]
\[ \Rightarrow \tan x > - 1\]
\[ \Rightarrow x \in \left( 0, \frac{3\pi}{4} \right) \cup \left( \frac{7\pi}{4}, 2\pi \right)\]
\[\text { So,f(x)is increasing on } \left( 0, \frac{3\pi}{4} \right) \cup \left( \frac{7\pi}{4}, 2\pi \right) . \]
\[\text { For f(x) to be decreasing we must have},\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \cos x + \sin x < 0\]
\[ \Rightarrow \sin x < - \cos x\]
\[ \Rightarrow \tan x < - 1\]
\[ \Rightarrow x \in \left( \frac{3\pi}{4}, \frac{7\pi}{4} \right)\]
\[\text { So,f(x)is decreasing on }\left( \frac{3\pi}{4}, \frac{7\pi}{4} \right).\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that the logarithmic function is strictly increasing on (0, ∞).
The interval in which y = x2 e–x is increasing is ______.
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Function f(x) = x3 − 27x + 5 is monotonically increasing when
Function f(x) = ax is increasing on R, if
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
The function `1/(1 + x^2)` is increasing in the interval ______
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function f (x) = x2, for all real x, is ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = x3 + 3x is increasing in interval ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.