मराठी

Prove that the Function F : N → N, Defined by F(X) = X2 + X + 1 is One-one but Not Onto. Find Inverse of F : N → S, Where S is Range of F. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.

बेरीज

उत्तर

The given function is
f : N → N
f(x) = x2 + x + 1

Let x1, x2 6N

So let f (x1) = f (x2)

`x_1^2 + x_1 + 1 = x_2^2 + x_2 + 1`

`x_1^2 - x_2^2 + x_1 - x_2 = 0`

(x1 - x2) (x1 + x2 + 1) = 0
∵  x2 = x1
or x2  = - x1 - 1
x1 ∈ N
x1 - 1 ∈ N

So x2 ≠ -x1 - 1

∵  f (x2) = f (x1)  only for x1 = x2

So f(x) is one -one function.

∵ f (x) = x2 + x + 1

`"f" ("x") = ("x" + 1/2)^2 + 3/4`

Which is an increasing function.

f(1) = 3
∵ Range of f(x) will be {3, 7, .....} Which is a subset of N.

So it is an into function. i.e., f(x) is not an onto function.

let  y = x2 + x + 1

x2 + x + 1 - y = 0

`"x" = (-1± sqrt((1 - 4 )(1 - "y")))/(2)`

`"x" = (-1 ± sqrt(4"y" -3))/(2)`

So two possibilities are there for `f^-1 ("x")`

`"f"^-1 ("x") = (-1 + sqrt(4"x" -3))/(2), (-1 - sqrt(4"x" -3))/(2)` and we know `"f"^-1 (3)` = 1 because `"f"(1) = 3`

so `"f"^-1 ("x") = (-1 + sqrt(4"x" - 3))/(2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/1/3

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Show that f(x) = e2x is increasing on R.


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


The function f(x) = xx decreases on the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


Which of the following functions is decreasing on `(0, pi/2)`?


The function f(x) = tanx – x ______.


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f (x) = 2 – 3 x is ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×