मराठी

If the Function F(X) = X2 − Kx + 5 is Increasing on [2, 4], Then - Mathematics

Advertisements
Advertisements

प्रश्न

If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then

पर्याय

  •  k ∈ (2, ∞)

  • k ∈ (−∞, 2)

  • k ∈ (4, ∞)

  •  k ∈ (−∞, 4).

MCQ

उत्तर

k ∈ (−∞, 4)

\[f\left( x \right) = x^2 - kx + 5\]

\[f'\left( x \right) = 2x - k\]

\[\text { Given: f(x) is increasing on } [2, 4] . \]

\[ \Rightarrow f'\left( x \right) > 0\]

\[ \Rightarrow 2x - k > 0\]

\[ \Rightarrow k < 2x\]

\[\because x \in \left[ 2, 4 \right], \text { maximum value of k is} 4,k< 4.\]

\[ \therefore k \in \left( - \infty , 4 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 27 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


The function f(x) = cot−1 x + x increases in the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


The function f(x) = 9 - x5 - x7 is decreasing for


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


The function f(x) = tan-1 x is ____________.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


Function given by f(x) = sin x is strictly increasing in.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


A function f is said to be increasing at a point c if ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×