Advertisements
Advertisements
प्रश्न
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
पर्याय
increasing
decreasing
constant
none of these
उत्तर
\[f(x) = \frac{- x}{2} + \sin x\text { defined on } \left[ \frac{- \pi}{3}, \frac{\pi}{3} \right]\]
\[ \therefore f'(x) = \frac{- 1}{2} + \cos x \]
\[ \Rightarrow f'(x) \geqslant 0 \forall x \in \left[ \frac{- \pi}{3}, \frac{\pi}{3} \right]\]
\[\left[ \because \text { for } x \in \left[ \frac{- \pi}{3}, \frac{\pi}{3} \right] , \cos x \geqslant \frac{1}{2} \right]\]
Hence, the given function is increasing .
APPEARS IN
संबंधित प्रश्न
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Function f(x) = x3 − 27x + 5 is monotonically increasing when
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Show that f(x) = x – cos x is increasing for all x.
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
The function f(x) = sin x + 2x is ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.