मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the values of x for which f(x) = xx2+1 is (a) strictly increasing (b) decreasing. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.

बेरीज

उत्तर

f(x) = `x/(x^2 + 1)`

∴ f'(x) = `d/dx(x/(x^2 + 1))`

= `((x^2 + 1).d/dx(x) - xd/dx(x^2 + 1))/(x^2 + 1)^2`

= `((x^2 + 1)(1) - x(2x + 0))/(x^2 + 1)^2`

= `(x^2 + 1 - 2x^2)/(x^2 + 1)^2`

= `(1 - x^2)/(x^2 + 1)^2`

(a) f is strictly increasing if f'(x) > 0

i.e. if `(1 - x^2)/(x^2 + 1)^2 > 0`

i.e. if 1 – x2 > 0             ...[∵ (x2 + 1)2 > 0]
i.e. if 1 > x2
i.e. if x2 < 1
i.e. if – 1 < x < 1

∴ f is strictly increasing if – 1 < x < 1

(b) f is strictly decreasing if f'(x) < 0

i.e. if `(1 - x^2)/(x^2 + 1)^2 < 0`

i.e. if 1 – x2 < 0             ...[∵ (x2 + 1)2 > 0]
i.e. if 1 < x2
i.e. if x2 > 1
i.e. if  x > 1 or x < – 1

∴ f is strictly decreasing if x < – 1 or x > 1

i.e. `x ∈( - oo, - 1) ∪ (1, oo)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Applications of Derivatives - Exercise 2.4 [पृष्ठ ९०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Applications of Derivatives
Exercise 2.4 | Q 6 | पृष्ठ ९०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


The interval in which y = x2 e–x is increasing is ______.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


The function f(x) = x2 e−x is monotonic increasing when


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The function f(x) = x9 + 3x7 + 64 is increasing on


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Show that f(x) = x – cos x is increasing for all x.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


Which of the following functions is decreasing on `(0, pi/2)`?


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


If f(x) = x + cosx – a then ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


A function f is said to be increasing at a point c if ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


The function f(x) = sin4x + cos4x is an increasing function if ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×