Advertisements
Advertisements
प्रश्न
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
उत्तर
\[Here, \]
\[f\left( x \right) = \cos x\]
\[\text{Domain of cos x is}\left( - \pi, \pi \right).\]
\[ \Rightarrow f'\left( x \right) = - \sin x\]
\[\text{For x} \in \left( - \pi, 0 \right), \sin x < 0 \left[ \because \text{sine function is negative in third and fourth quadrant }\right]\]
\[ \Rightarrow - \sin x > 0\]
\[ \Rightarrow f'\left( x \right) > 0\]
\[So, \text{cos x is increasing in} \left( - \pi, 0 \right) . \]
\[\text{For x} \in \left( 0, \pi \right)),\sin x > 0 \left[ \because \text{sine function is positive in first and second quadrant }\right]\]
\[ \Rightarrow - \sin x < 0\]
\[ \Rightarrow f'\left( x \right) < 0\]
\[\text{So,f(x) is decreasing on}\left( 0, \pi \right).\]
\[\text{Thus,f(x) is neither increasing nor decreasing in}\left( - \pi, \pi \right).\]
APPEARS IN
संबंधित प्रश्न
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Prove that the logarithmic function is strictly increasing on (0, ∞).
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Show that f(x) = x – cos x is increasing for all x.
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f (x) = x2, for all real x, is ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
A function f is said to be increasing at a point c if ______.