Advertisements
Advertisements
प्रश्न
y = x(x – 3)2 decreases for the values of x given by : ______.
पर्याय
1 < x < 3
x < 0
x > 0
`0 < x < 3/2`
उत्तर
y = x(x – 3)2 decreases for the values of x given by : 1 < x < 3.
Explanation:
Here y = x(x – 3)2
`"dy"/"dx" = x * 2(x - 3) + (x - 3)^2 * 1`
⇒ `"dy"/"dx" = 2x(x - 3) + (x - 3)^2`
For increasing and decreasing `"dy"/"dx"` = 0
∴ 2x(x – 3) + (x – 3)2 = 0
⇒ (x – 3)(2x + x – 3) = 0
⇒ (x – 3)(3x – 3) = 0
⇒ 3(x – 3)(x – 1) = 0
∴ x = 1, 3
∴ Possible intervals are `(– oo, 1), (1, 3), (3, oo)`
`"dy"/"dx"` = (x – 3)(x – 1)
For `(– oo, 1)` = (–) (–) = (+) increasing
For (1, 3) = (–) (+) = (–) decreasing
For `(3, oo)` = (+) (+) = (+) increasing
So the function decreases in (1, 3) or 1 < x < 3
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
The function f(x) = 9 - x5 - x7 is decreasing for
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f (x) = x2, for all real x, is ____________.
The function f(x) = tan-1 x is ____________.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.