मराठी

Show that the function given by f(x) = 3x + 17 is strictly increasing on R. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function given by f(x) = 3x + 17 is strictly increasing on R.

बेरीज

उत्तर

We have f(x) = 3x + 17

f(x) being a polynomial function, is continuous and derivable on R.

f'(x) `3 > 0, x in R`

⇒ f is strictly increasing on R.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.2 [पृष्ठ २०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.2 | Q 2 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


The interval in which y = x2 e–x is increasing is ______.


Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


The function f(x) = cot−1 x + x increases in the interval


The function f(x) = xx decreases on the interval


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


The function f(x) = tanx – x ______.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


A function f is said to be increasing at a point c if ______.


The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×