Advertisements
Advertisements
प्रश्न
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
उत्तर
We have f(x) = 3x + 17
f(x) being a polynomial function, is continuous and derivable on R.
f'(x) `3 > 0, x in R`
⇒ f is strictly increasing on R.
APPEARS IN
संबंधित प्रश्न
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
The interval in which y = x2 e–x is increasing is ______.
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
The function f(x) = cot−1 x + x increases in the interval
The function f(x) = xx decreases on the interval
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
The function f(x) = tanx – x ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
A function f is said to be increasing at a point c if ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.