Advertisements
Advertisements
प्रश्न
The function f(x) = xx decreases on the interval
पर्याय
(0, e)
(0, 1)
(0, 1/e)
none of these
उत्तर
(0, 1/e)
\[\text { Given }: \hspace{0.167em} f\left( x \right) = x^x \]
\[\text { Applying log with base e on both sides, we get }\]
\[\log \left( f\left( x \right) \right) = x \log_e x\]
\[\frac{f'\left( x \right)}{f\left( x \right)} = 1 + \log_e x\]
\[f'\left( x \right) = f\left( x \right)\left( 1 + \log_e x \right) = x^x \left( 1 + \log_e x \right)\]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow x^x \left( 1 + \log_e x \right) < 0\]
\[\text { Here, logaritmic function is defined for positive values of x } . \]
\[ \Rightarrow x^x > 0\]
\[ \Rightarrow 1 + \log_e x < 0 \left[ \text { Since } x^x > 0, x^x \left( 1 + \log_e x \right) < 0 \Rightarrow 1 + \log_e x < 0 \right] \]
\[ \Rightarrow \log_e x < - 1\]
\[ \Rightarrow x < e^{- 1} \left[ \because l {og}_a x < N \Rightarrow x < a^N \text { for }a > 1 \right]\]
\[\text { Here }, \]
\[e > 1\]
\[ \Rightarrow \log_e x < - 1 \Rightarrow x < e^{- 1} \]
\[ \Rightarrow x \in \left( 0, e^{- 1} \right)\]
\[\text { So,f(x) is decreasing on }\left( 0, \frac{1}{e} \right).\]
APPEARS IN
संबंधित प्रश्न
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
The function f(x) = cot−1 x + x increases in the interval
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Show that f(x) = x – cos x is increasing for all x.
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
For every value of x, the function f(x) = `1/7^x` is ______
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
Function given by f(x) = sin x is strictly increasing in.
A function f is said to be increasing at a point c if ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?