Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\]
\[ = \frac{3 x^4 + 8 x^3 - 30 x^2 - 72x + 84}{12}\]
\[f'\left( x \right) = \frac{12 x^3 + 24 x^2 - 60x - 72}{12}\]
\[ = \left( x^3 + 2 x^2 - 5x - 6 \right)\]
\[ = \left( x + 1 \right)\left( x^2 + x - 6 \right)\]
\[ = \left( x + 1 \right)\left( x - 2 \right)\left( x + 3 \right)\]
\[\text { Here }, -1, 2 \text { and } -3 \text { are the critical points }.\]
\[\text { The possible intervals are }\left( - \infty - 3 \right),\left( - 3, - 1 \right),\left( - 1, 2 \right)and\left( 2, \infty \right).\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \left( x + 1 \right)\left( x - 2 \right)\left( x + 3 \right) > 0\]
\[ \Rightarrow x \in \left( - 3, - 1 \right) \cup \left( 2, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - 3, - 1 \right) \cup \left( 2, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \left( x + 1 \right)\left( x - 2 \right)\left( x + 3 \right) < 0\]
\[ \Rightarrow x \in \left( - \infty - 3 \right) \cup \left( - 1, 2 \right) \left[ \text { From eq }. (1) \right]\]
\[\text { So,}f(x)\text { is decreasing on x } \in \left( - \infty - 3 \right) \cup \left( - 1, 2 \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that the logarithmic function is strictly increasing on (0, ∞).
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function f(x) = x9 + 3x7 + 64 is increasing on
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find `dy/dx,if e^x+e^y=e^(x-y)`
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Show that f(x) = x – cos x is increasing for all x.
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The function `1/(1 + x^2)` is increasing in the interval ______
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Which of the following graph represent the strictly increasing function.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.