Advertisements
Advertisements
प्रश्न
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
उत्तर
y = `x^4 – (4x^3)/3`
⇒ `"dy"/"dx"` = 4x3 – 4x2
= 4x2(x – 1)
Now, `"dy"/"dx"` = 0
⇒ x = 0, x = 1.
Since f′(x) < 0 ∀ ∈x `(- oo, 0)` ∪ (0, 1) and f is continuous in `(- oo, 0]` and [0, 1].
Therefore f is decreasing in `(- oo, 1]` and f is increasing in `[1, oo)`.
Note: Here f is strictly decreasing in `(- oo, 0)` ∪ (0, 1) and is strictly increasing in `(1, oo)`.
APPEARS IN
संबंधित प्रश्न
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x3 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Show that f(x) = x – cos x is increasing for all x.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
If f(x) = x3 – 15x2 + 84x – 17, then ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
y = x(x – 3)2 decreases for the values of x given by : ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
Which of the following graph represent the strictly increasing function.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
A function f is said to be increasing at a point c if ______.