Advertisements
Advertisements
प्रश्न
What are the values of 'a' for which f(x) = ax is increasing on R ?
उत्तर
\[f\left( x \right) = a^x \]
\[f'\left( x \right) = a^x \log a\]
\[\text { Given }: f(x) \text { is increasing on R } . \]
\[ \Rightarrow f'\left( x \right) > 0\]
\[ \Rightarrow a^x \log a > 0\]
\[\text { Logarithmic function is defined for positive values of a } . \]
\[ \Rightarrow a > 0\]
\[ \Rightarrow a^x > 0\]
\[\text { We know,} \]
\[ a^x \log a > 0\]
\[\text{ It can be possible when } a^x > 0 \text { and } \log a > 0 \text { or }a^x < 0 \text { and } \log a < 0 . \]
\[ \Rightarrow \log a > 0\]
\[ \Rightarrow a > 1\]
\[\text { So, }f(x)\text { is increasing when }a> 1 .\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
The function f(x) = xx decreases on the interval
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
The function f(x) = x2 e−x is monotonic increasing when
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
The function f(x) = 9 - x5 - x7 is decreasing for
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f (x) = x2, for all real x, is ____________.
The function f(x) = tan-1 x is ____________.
2x3 - 6x + 5 is an increasing function, if ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Which of the following graph represent the strictly increasing function.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.