Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
पर्याय
increasing for all x ∈ R, x ≠ 1
decreasing
neither, increasing nor decreasing
decreasing for all x ∈ R, x ≠ 1
उत्तर
increasing for all x ∈ R, x ≠ 1
Explanation:
f(x) = x3 - 3x2 + 3x - 100
Differentiating w.r.t. x, we get
f'(x) = 3x2 - 6x + 3
= 3(x2 - 2x + 1)
= 3(x - 1)2
Note that (x – 1)2 > 0 for all x ∈ R, x ≠ 1.
∴ 3(x - 1)2 > 0 for all x ∈ R, x ≠ 1
∴ f(x) is increasing for all x ∈ R, x ≠ 1.
APPEARS IN
संबंधित प्रश्न
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
The function f(x) = xx decreases on the interval
Let f(x) = x3 − 6x2 + 15x + 3. Then,
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
Find `dy/dx,if e^x+e^y=e^(x-y)`
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The slope of tangent at any point (a, b) is also called as ______.
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
Which of the following functions is decreasing on `(0, pi/2)`?
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.