Advertisements
Advertisements
प्रश्न
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
उत्तर
f(x) = x3 – 6x2 – 36x + 7
∴ f′(x) = 3x2 – 12x – 36
= 3(x2 – 4x – 12)
= 3(x – 6)(x + 2)
f(x) is strictly increasing, if f′(x) > 0
∴ 3(x – 6)(x + 2) > 0
∴ (x – 6)(x + 2) > 0
ab > 0 ⇔ a > 0 and b > 0 or a < 0 and b < 0
Either x – 6 > 0 and x + 2 > 0
or
x – 6 < 0 and x + 2 < 0
Case I: x – 6 > 0 and x + 2 > 0
∴ x > 6 and x > – 2
∴ x > 6
Case II: x – 6 < 0 and x + 2 < 0
∴ x < 6 and x < – 2
∴ x < – 2
Thus, f(x) is strictly increasing for x ∈ (−∞ −2) ∪ (6, ∞).
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The function f(x) = cot−1 x + x increases in the interval
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Function f(x) = cos x − 2 λ x is monotonic decreasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Every invertible function is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Show that f(x) = x – cos x is increasing for all x.
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
The function f(x) = x3 - 3x is ______.
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
For every value of x, the function f(x) = `1/7^x` is ______
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
Function given by f(x) = sin x is strictly increasing in.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.