मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing

बेरीज

उत्तर

f(x) = x3 – 6x2 – 36x + 7

∴ f′(x) = 3x2 – 12x – 36

= 3(x2 – 4x – 12)

= 3(x – 6)(x + 2)

f(x) is strictly increasing, if f′(x) > 0

∴ 3(x – 6)(x + 2) > 0

∴ (x – 6)(x + 2) > 0

ab > 0 ⇔ a > 0 and b > 0 or a < 0 and b < 0

Either x – 6 > 0 and x + 2 > 0

or

x – 6 < 0 and x + 2 < 0

Case I: x – 6 > 0 and x + 2 > 0

∴ x > 6 and x > – 2

∴ x > 6

Case II: x – 6 < 0 and x + 2 < 0

∴ x < 6 and x < – 2

∴ x < – 2

Thus, f(x) is strictly increasing for x ∈ (−∞ −2) ∪ (6, ∞).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.2: Applications of Derivatives - Short Answers II

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function f(x) = cot−1 x + x increases in the interval


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Function f(x) = cos x − 2 λ x is monotonic decreasing when


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


Every invertible function is


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Show that f(x) = x – cos x is increasing for all x.


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


The function f(x) = x3 - 3x is ______.


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


For every value of x, the function f(x) = `1/7^x` is ______ 


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


Function given by f(x) = sin x is strictly increasing in.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×