मराठी

Find the Set of Values of 'A' for Which F(X) = X + Cos X + Ax + B is Increasing on R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?

बेरीज

उत्तर

\[f\left( x \right) = x + \cos x + ax + b\]

\[f'\left( x \right) = 1 - \sin x + a\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 1 - \sin x + a > 0\]

\[ \Rightarrow \sin x < 1 + a\]

\[\text { We know that the maximum value of sin x is 1 }.\]

\[ \Rightarrow 1 + a > 1\]

\[ \Rightarrow a > 0\]

\[ \Rightarrow a \in \left( 0, \infty \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.3 | Q 8 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


The function f(x) = x2 e−x is monotonic increasing when


Function f(x) = ax is increasing on R, if


Find `dy/dx,if e^x+e^y=e^(x-y)`


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing. 


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Which of the following functions is decreasing on `(0, pi/2)`?


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


Function given by f(x) = sin x is strictly increasing in.


If f(x) = x + cosx – a then ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×