Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 5 x^3 - 15 x^2 - 120x + 3\]
\[f'\left( x \right) = 15 x^2 - 30x - 120\]
\[ = 15 \left( x^2 - 2x - 8 \right)\]
\[ = 15 \left( x - 4 \right)\left( x + 2 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 15 \left( x - 4 \right)\left( x + 2 \right) > 0 \]
\[ \Rightarrow \left( x - 4 \right)\left( x + 2 \right) > 0 \left[ \text { Since } 15 > 0, 15 \left( x - 4 \right)\left( x + 2 \right) > 0 \Rightarrow \left( x - 4 \right)\left( x + 2 \right) > 0 \right]\]
\[ \Rightarrow\text{ x }< - 2 \ or \ x > 4\]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 4, \infty \right)\]
\[\text { So },f(x)\text { is increasing on x } \in \left( - \infty , - 2 \right) \cup \left( 4, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have },\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 15 \left( x - 4 \right)\left( x + 2 \right) < 0\]
\[ \Rightarrow \left( x - 4 \right)\left( x + 2 \right) < 0 \left[ \text { Since } 15 > 0, 15 \left( x - 4 \right)\left( x + 2 \right) < 0 \Rightarrow \left( x - 4 \right)\left( x + 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 4\]
\[ \Rightarrow x \in \left( - 2, 4 \right)\]
\[\text { So, }f(x)\text { is decreasing on } x \in \left( - 2, 4 \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = x3 − 27x + 5 is monotonically increasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Find `dy/dx,if e^x+e^y=e^(x-y)`
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
The slope of tangent at any point (a, b) is also called as ______.
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
The function f(x) = sin x + 2x is ______
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The function f(x) = x3 + 3x is increasing in interval ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.