मराठी

Prove that the Following Function is Increasing on R F ( X ) = 3 X 5 + 40 X 3 + 240 X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?

बेरीज

उत्तर

\[f\left( x \right) = 3 x^5 + 40 x^3 + 240x\]

\[f'\left( x \right) = 15 x^4 + 120 x^2 + 240\]

\[ = 15 \left( x^4 + 8 x^2 + 16 \right)\]

\[ = 15 \left( x^2 + 4 \right)^2 > 0, \forall x \in R \left[ \because 15 > 0 \text { and } \left( x^2 + 4 \right)^2 > 0 \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 30.1 | पृष्ठ ३५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


The function `1/(1 + x^2)` is increasing in the interval ______ 


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


The function f(x) = tan-1 x is ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×