मराठी

Without Using the Derivative Show that the Function F (X) = 7x − 3 is Strictly Increasing Function on R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?

बेरीज

उत्तर

\[\text { Here }, \]

\[f\left( x \right) = 7x - 3\]

\[\text { Let } x_1 , x_2 \text { in R such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow 7 x_1 < 7 x_2 \left[ \because 7 >0 \right]\]

\[ \Rightarrow 7 x_1 - 3 < 7 x_2 - 3\]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in R\]

\[\text { So,}f\left( x \right)\text {  is strictly increasing on R } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 9 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


The function f(x) = xx decreases on the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Let f(x) = x3 − 6x2 + 15x + 3. Then,


The function f(x) = x2 e−x is monotonic increasing when


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


The slope of tangent at any point (a, b) is also called as ______.


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f (x) = 2 – 3 x is ____________.


Function given by f(x) = sin x is strictly increasing in.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×