Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 2 x^3 - 24x + 107\]
\[f'\left( x \right) = 6 x^2 - 24 = 6 \left( x^2 - 4 \right) = 6 \left( x + 2 \right)\left( x - 2 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6 \left( x + 2 \right)\left( x - 2 \right) > 0\]
\[ \Rightarrow \left( x + 2 \right)\left( x - 2 \right) > 0 \left[ \text { Since }6 > 0, 6 \left( x + 2 \right)\left( x - 2 \right) > 0 \Rightarrow \left( x + 2 \right)\left( x - 2 \right) > 0 \right]\]
\[ \Rightarrow x < - 2 \ or \ x > 2\]
\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( 2, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - \infty , - 2 \right) \cup \left( 2, \infty \right).\]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6 \left( x + 2 \right)\left( x - 2 \right) < 0\]
\[ \Rightarrow \left( x + 2 \right)\left( x - 2 \right) < 0 \left[ \text { Since } 6 > 0, 6 \left( x + 2 \right)\left( x - 2 \right) < 0 \Rightarrow \left( x + 2 \right)\left( x - 2 \right) < 0 \right]\]
\[ \Rightarrow - 2 < x < 2 \]
\[ \Rightarrow x \in \left( - 2, 2 \right)\]
\[\text { So },f(x)\text { is decreasing on }x \in \left( - 2, 2 \right) .\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing
For every value of x, the function f(x) = `1/7^x` is ______
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.