Advertisements
Advertisements
प्रश्न
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
पर्याय
(0,1)
`(pi/2, pi)`
`(0, pi/2)`
None of these
उत्तर
None of these
Explanation:
Given f(x) = x100 + sin x - 1,
f'(x) = 100 x99 + cos x
(a) Interval 0 < x < 1, 0 < 100 x99 < 100
And cos x = + positive
`therefore` f'(x) = + positive
Hence, the function f is increasing.
(b) Interval is `pi/2 < "x" < pi`
`therefore` f'(x) = 100 x99 + cos x = + positive
Hence, the function f is increasing.
(c) Interval is, `0 < "x" < pi/2`
Here, 100 x99 and cos x are both positive.
`therefore` f'(x) = + ve
Hence, the function f is increasing.
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = x3 − 27x + 5 is monotonically increasing when
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The function f(x) = 9 - x5 - x7 is decreasing for
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
The function f(x) = sin4x + cos4x is an increasing function if ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?