मराठी

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x^3 + 0.02x^2 + 30x. - Mathematics

Advertisements
Advertisements

प्रश्न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.

उत्तर

Given,P(x) = 0.005x3 + 0.02x2 + 30x.

Differentiating both sides with respect to x, we have 

marginal increase in pollution content = `(dP(x)/(dx))=0.015x^2+0.04x+30......(1)`

Putting x = 3 in (1), we have `((dP(x))/dx)_(x=3)=0.015xx9+0.04xx3+30=30.255`

Therefore, the value of marginal increase in pollution content is 30.255

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2012-2013 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


The interval in which y = x2 e–x is increasing is ______.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Function f(x) = x3 − 27x + 5 is monotonically increasing when


Every invertible function is


Function f(x) = loga x is increasing on R, if


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Show that f(x) = x – cos x is increasing for all x.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


Which of the following functions is decreasing on `(0, pi/2)`?


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


The function `"f"("x") = "x"/"logx"` increases on the interval


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


If f(x) = x + cosx – a then ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


The function f(x) = sin4x + cos4x is an increasing function if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×