Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^3 - 6 x^2 + 9x + 15\]
\[f'\left( x \right) = 3 x^2 - 12x + 9\]
\[ = 3 \left( x^2 - 4x + 3 \right)\]
\[ = 3 \left( x - 1 \right)\left( x - 3 \right)\]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 3 \left( x - 1 \right)\left( x - 3 \right) > 0 \]
\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \left[ \text { Since } 3 > 0, 3 \left( x - 1 \right)\left( x - 3 \right) > 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \right]\]
\[ \Rightarrow x < 1 \ or \ x > 3\]
\[ \Rightarrow x \in \left( - \infty , 1 \right) \cup \left( 3, \infty \right)\]
\[\text { So,f(x)is increasing on } x \in \left( - \infty , 1 \right) \cup \left( 3, \infty \right).\]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 3 \left( x - 1 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \left[ \text { Since } 3 > 0, 3 \left( x - 1 \right)\left( x - 3 \right) < 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \right]\]
\[ \Rightarrow 1 < x < 3 \]
\[ \Rightarrow x \in \left( 1, 3 \right)\]
\[\text { So,f(x)is decreasing on x } \in \left( 1, 3 \right) .\]
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The slope of tangent at any point (a, b) is also called as ______.
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = x3 + 3x is increasing in interval ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.