मराठी

Find the intervals in which the following functions are strictly increasing or decreasing: 6 − 9x − x2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2

बेरीज

उत्तर

f(x) = 6 - 9x - x2

f'(x) = - 9x - 2x = -(2x + 9)

f'(x) = 0 ⇒ (2x + 9) = 0 ⇒ x = - `9/2`

The point x = `- 9/2` divides the number line into two parts, intervals `(- oo, - 9/2)` and `(- 9/2, oo)`.

In the interval `(- oo, - 9/2)`, f'(x) = (-)(-) = + Positive

Hence, the function f is continuously increasing.

In the interval `(- 9/2, oo)`, f'(x) = (-)(+) = - Negative

Hence, the function f is continuously decreasing.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.2 [पृष्ठ २०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.2 | Q 6.4 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


The function f(x) = tan-1 x is ____________.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×