Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\]
\[ = \frac{3 x^4 - 8 x^3 - 30 x^2 + 72x + 110}{10}\]
\[f'\left( x \right) = \frac{12 x^3 - 24 x^2 - 60x + 72}{10}\]
\[ = \frac{12}{10}\left( x^3 - 2 x^2 - 5x + 6 \right)\]
\[ = \frac{\left( x - 1 \right)\left( x^2 - x - 6 \right)}{10}\]
\[ = \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right)\]
\[\text { Here }, 1, 2 \text { and } 3 \text { are the critical points } . \]
\[\text { The possible intervals are }\left( - \infty - 2 \right),\left( - 2, 1 \right),\left( 1, 3 \right)\text { and }\left( 3, \infty \right).\]
\[\text { For }f(x)\text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0\]
\[ \Rightarrow x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right)\]
\[\text { So },f(x)\text { is increasing on } x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right) . \]
\[\text { For }f(x)\text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right) \]
\[\text { So,}f(x)\text { is decreasing on } x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right) .\]
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
The interval in which y = x2 e–x is increasing is ______.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The function f(x) = sin x + 2x is ______
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The function f(x) = tanx – x ______.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.