Advertisements
Advertisements
प्रश्न
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
उत्तर
\[\text { Here }, \]
\[f\left( x \right) = \left| x \right|\]
\[(a) \text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \text { Then },\]
\[ x_1 < x_2 \]
\[ \Rightarrow \left| x_1 \right| < \left| x_2 \right|\]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]
\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { So },f\left( x \right) \text { is increasing on }\left( 0, \infty \right).\]
\[(b) \text { Let } x_1 , x_2 \in ( - \infty , 0]. \text { such that } x_1 < x_2 . \text { Then },\]
\[ x_1 < x_2 \]
\[ \Rightarrow \left| x_1 \right| > \left| x_2 \right|\]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in ( - \infty , 0].\]
\[\text { So },f\left( x \right) \text { is decreasing on }( - \infty , 0].\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
The function `1/(1 + x^2)` is increasing in the interval ______
The function f (x) = x2, for all real x, is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Which of the following graph represent the strictly increasing function.
Function given by f(x) = sin x is strictly increasing in.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.