Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\]
\[f'\left( x \right) = 6 x^3 - 12 x^2 - 90x\]
\[ = 6x\left( x^2 - 2x - 15 \right)\]
\[ = 6x\left( x - 5 \right)\left( x + 3 \right)\]
\[\text { Here, } x = - 3, x = 0 \text { and }x = 5 \text { are the critical points }.\]
\[\text { The possible intervals are }\left( - \infty , - 3 \right),\left( - 3, 0 \right),\left( 0, 5 \right)\text { and }\left( 5, \infty \right). .....(1)\]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) > 0 \left[\text { Since,} 6 > 0, 6x\left( x - 5 \right)\left( x + 3 \right) > 0 \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) > 0 \right]\]
\[ \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) > 0\]
\[ \Rightarrow x \in \left( - 3, 0 \right) \cup \left( 5, \infty \right) \left[ \text { From eq.} (1) \right]\]
\[\text { So,f(x)is increasing on x } \in \left( - 3, 0 \right) \cup \left( 5, \infty \right) .\]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) < 0 \left[ \text { Since }6 > 0, 6x\left( x - 5 \right)\left( x + 3 \right) < 0 \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) < 0 \right]\]
\[ \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) < 0\]
\[ \Rightarrow x \in \left( - \infty , - 3 \right) \cup \left( 0, 5 \right) \left[ \text { From eq.} (1) \right]\]
\[\text { So,f(x)is decreasing on x } \in \left( - \infty , - 3 \right) \cup \left( 0, 5 \right) .\]
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
The interval in which y = x2 e–x is increasing is ______.
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Function f(x) = ax is increasing on R, if
Function f(x) = loga x is increasing on R, if
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Show that f(x) = x – cos x is increasing for all x.
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?