Advertisements
Advertisements
Question
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Solution
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\]
\[f'\left( x \right) = 6 x^3 - 12 x^2 - 90x\]
\[ = 6x\left( x^2 - 2x - 15 \right)\]
\[ = 6x\left( x - 5 \right)\left( x + 3 \right)\]
\[\text { Here, } x = - 3, x = 0 \text { and }x = 5 \text { are the critical points }.\]
\[\text { The possible intervals are }\left( - \infty , - 3 \right),\left( - 3, 0 \right),\left( 0, 5 \right)\text { and }\left( 5, \infty \right). .....(1)\]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) > 0 \left[\text { Since,} 6 > 0, 6x\left( x - 5 \right)\left( x + 3 \right) > 0 \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) > 0 \right]\]
\[ \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) > 0\]
\[ \Rightarrow x \in \left( - 3, 0 \right) \cup \left( 5, \infty \right) \left[ \text { From eq.} (1) \right]\]
\[\text { So,f(x)is increasing on x } \in \left( - 3, 0 \right) \cup \left( 5, \infty \right) .\]
\[\text { For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) < 0 \left[ \text { Since }6 > 0, 6x\left( x - 5 \right)\left( x + 3 \right) < 0 \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) < 0 \right]\]
\[ \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) < 0\]
\[ \Rightarrow x \in \left( - \infty , - 3 \right) \cup \left( 0, 5 \right) \left[ \text { From eq.} (1) \right]\]
\[\text { So,f(x)is decreasing on x } \in \left( - \infty , - 3 \right) \cup \left( 0, 5 \right) .\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = ax is increasing on R, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The function f(x) = sin x + 2x is ______
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Which of the following graph represent the strictly increasing function.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
If f(x) = x + cosx – a then ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?