English

Find the value of x, such that f(x) is decreasing function. f(x) = 2x3 – 15x2 – 84x – 7 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 

Sum

Solution

f(x) = 2x3 – 15x2 – 84x – 7 

∴ f'(x) = 6x2 – 30x – 84 

= 6(x2 – 5x – 14)

= 6(x2 – 7x + 2x – 14)

= 6(x – 7)(x + 2)

f(x) is an decreasing function, if f'(x) < 0

∴ 6(x – 7)(x + 2) < 0

∴ (x – 7)(x + 2) < 0

ab < 0 `⇔` a > 0 and b < 0 or a < 0 or b > 0

∴ Either (x – 7) > 0 and (x + 2) < 0 or

(x – 7) < 0 and (x + 2) > 0

Case 1: x – 7 > 0 and x + 2 < 0

∴ x > 7 and x < –2, which is not possible.

Case 2: x – 7 < 0 and x + 2 > 0

∴ x < 7 and x > –2 

Thus, f(x) is an decreasing function for –2 < x < 7 i.e., (–2, 7)

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Applications of Derivatives - Exercise 4.2 [Page 106]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Applications of Derivatives
Exercise 4.2 | Q 3.3 | Page 106

RELATED QUESTIONS

Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


The function f(x) = tanx – x ______.


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


2x3 - 6x + 5 is an increasing function, if ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


If f(x) = x + cosx – a then ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


A function f is said to be increasing at a point c if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×