English

Choose the correct option from the given alternatives : Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.

Options

  • `(-oo, 1)`

  • `[3, oo)`

  • `(-oo, 1] ∪ [3, oo)`

  • (1, 3)

MCQ
Fill in the Blanks

Solution

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in (1, 3).

Explanation:

Here, `f(x) = 3x^2 - 12x + 9`

= `3(x - 1)(x - 3) ≤ 0 ⇔ x ∈ [1, 3]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Applications of Derivatives - Miscellaneous Exercise 1 [Page 92]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 2 Applications of Derivatives
Miscellaneous Exercise 1 | Q 5 | Page 92

RELATED QUESTIONS

Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


The function f(x) = x2 e−x is monotonic increasing when


Every invertible function is


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


The function f(x) = x9 + 3x7 + 64 is increasing on


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Show that f(x) = x – cos x is increasing for all x.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


The function f(x) = 9 - x5 - x7 is decreasing for


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.


If f(x) = x3 – 15x2 + 84x – 17, then ______.


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


y = x(x – 3)2 decreases for the values of x given by : ______.


The function f(x) = tanx – x ______.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


Which of the following graph represent the strictly increasing function.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×